开源 CI/CD 构建框架 Tekton 的深入剖析


简介

Tekton 是一个功能强大且灵活的 Kubernetes 原生 CI/CD 构建框架,用于创建持续集成和交付(CI/CD)系统。 关于 Tekton,网上可以搜到很多很多介绍文档,本文主要阐述我对 Tekton 的实现原理和背后的技术逻辑的一点理解。

Tekton 定义了 Task、TaskRun、Pipeline、PipelineRun、PipelineResource 五类核心对象,通过对 Task 和 Pipeline 的抽象,我们可以定义出任意组合的 Pipeline 模板来完成各种各样的 CI/CD 任务,再通过 TaskRun、PipelineRun 和 PipelineResource 可以将这些模板套用到各个实际的项目中。

实现原理

高度抽象的结构化设计使得 Tekton 具有非常灵活的特性,那么 Tekton 是如何实现 Workflow 的流转的呢?

Tekton 利用 Kubernetes 的 List-Watch 机制,在启动时初始化了 2 个 Controller、PipelineRunController 和 TaskRunController 。

PipelineRunController 监听 PipelineRun 对象的变化。在它的 reconcile 逻辑中,将pipeline 中所有的 Task 构建为一张有向无环图(DAG),通过遍历 DAG 找到当前可被调度的 Task 节点创建对应的 TaskRun 对象。

TaskRunController 监听 TaskRun 对象的变化。在它的 reconcile 逻辑中将 TaskRun 和对应 Task 转化为可执行的 Pod,由 kubernetes 调度执行。利用 Kubernetes 的 OwnerReference 机制, PipelineRun Own TaskRun、TaskRun Own Pod、Pod 状态变更时,触发 TaskRun 的 reconcile 逻辑, TaskRun 状态变更时触发 PipelineRun 的 reconcile 逻辑。
1.jpg

DAG 支持

Tekton 对 DAG 的支持相对比较简单。在 Tekton 中一个 Pipeline 就是一张 DAG ,Pipeline 中的多个Task可是DAG中的节点。Task 默认并发执行,可以通过 RunAfter 和 From 关键字控制执行顺序。

示例:
- name: lint-repo
taskRef:
name: pylint
resources:
inputs:
  - name: workspace
    resource: my-repo
- name: test-app
taskRef:
name: make-test
resources:
inputs:
  - name: workspace
    resource: my-repo
- name: build-app
taskRef:
name: kaniko-build-app
runAfter:
- test-app
resources:
inputs:
  - name: workspace
    resource: my-repo
outputs:
  - name: image
    resource: my-app-image
- name: build-frontend
taskRef:
name: kaniko-build-frontend
runAfter:
- test-app
resources:
inputs:
  - name: workspace
    resource: my-repo
outputs:
  - name: image
    resource: my-frontend-image
- name: deploy-all
taskRef:
name: deploy-kubectl
resources:
inputs:
  - name: my-app-image
    resource: my-app-image
    from:
      - build-app
  - name: my-frontend-image
    resource: my-frontend-image
    from:
      - build-frontend

渲染出的执行顺序为:
|            |
    v            v
 test-app    lint-repo
/        \
v          v
build-app  build-frontend
\          /
v        v
deploy-all

相比于 Argo 等专注在 Workflow 的项目而言, Tekton 支持的任务编排方式是非常有限的。常见的循环,递归,重试,超时等待等策略都是没有的。

条件判断

Tekton 支持 condition 关键字来进行条件判断。Condtion 只支持判断当前 Task 是否执行,不能作为 DAG 的分支条件来进行动态 DAG 的渲染。

condition:https://github.com/tektoncd/pi ... ns.md

* condition 检查失败(exitCode != 0),task 不会被执行,PipelineRun 状态不会因为 condition 检查失败而失败。
* 多个条件之间 “与” 逻辑关系

PipelineResource 在 Task 间数据交换

作为 CI/CD 的工具,代码在什么时候 Clone 到 WorkSpace 中,如何实现的? Tekton 中抽象了 PipelineResource 进行任务之间的数据交换, GitResource 是其中最基础的一种。用法如下。

声明一个 Git 类型的 PipelineResource:
kind: PipelineResource
metadata:
name: skaffold-git-build-push-kaniko
spec:
type: git
params:
- name: revision
value: v0.32.0
- name: url
value: https://github.com/GoogleContainerTools/skaffold

在 Task 中引用这个 Resource 做为输入:
kind: Task
metadata:
name: build-push-kaniko
spec:
inputs:
resources:
- name: workspace
  type: git
steps:
- name: build-and-push
image: registry.cn-shanghai.aliyuncs.com/kaniko-project-edas/executor:v0.17.1

代码会被 clone 在 /workspace 目录。

Tekton 是如何处理这些 PipelineResource 的呢,这就要从 Taskrun Controller 如何创建 Pod 说起。

Tekton 中一个 TaskRun 对应一个 Pod,每个 Pod 有一系列 init-containers 和 step-containers 组成。 init-container 中完成认证信息初始化, workspace 目录初始化等初始化工作。

在处理 step-container 时,会根据这个 Task 引用的资源 Append 或者 Insert 一个 step-container 来处理对应的输和输出,如下图所示。
2.png

Task中Step执行顺序控制

Tekton 源自 Knative Build,在 Knative Build 中使用 Init-container 来串联 Steps 保证 Steps 顺序执行,在上面的分析中我们知道 Tekton 是用 Containers 来执行 Steps, Pod 的 Containers 是并行执行的, Tekton 是如何保证 Steps 执行顺序呢?

这是一个 TaskRun 创建的 Pod 的部分描述信息,可以看到所有的 Step 都是被 /tekton/tools/entrypoints 封装起来执行的。 -wait_file 指定一个文件,通过监听文件句柄,在探测到文件存在时执行被封装的 Step 任务。 -post_file 指定一个文件,在Step任务完成后创建这个文件。通过文件序列 /tekton/tools/${index} 来对 Step 进行排序。
- args:
- -wait_file
- /tekton/tools/0
- -post_file
- /tekton/tools/1
- -termination_path
- /tekton/termination
- -entrypoint
- /ko-app/git-init
- --
- -url
- https://github.com/GoogleContainerTools/skaffold
- -revision
- v0.32.0
- -path
- /workspace/workspace
command:
- /tekton/tools/entrypoint
image: registry.cn-shanghai.aliyuncs.com/kaniko-project-edas/git-init:v0.10.2
name: step-git-source-skaffold-git-build-push-kaniko-rz765
- args:
- -wait_file
- /tekton/tools/1
- -post_file
- /tekton/tools/2
- -termination_path
- /tekton/termination
- -entrypoint
- /kaniko/executor
- --
- --dockerfile=Dockerfile
- --destination=localhost:5000/leeroy-web
- --context=/workspace/workspace/examples/microservices/leeroy-web
- --oci-layout-path=$(inputs.resources.builtImage.path)
command:
- /tekton/tools/entrypoint
image: registry.cn-shanghai.aliyuncs.com/kaniko-project-edas/executor@sha256:565d31516f9bb91763dcf8e23ee161144fd4e27624b257674136c71559ce4493
name: step-build-and-push
- args:
- -wait_file
- /tekton/tools/2
- -post_file
- /tekton/tools/3
- -termination_path
- /tekton/termination
- -entrypoint
- /ko-app/imagedigestexporter
- --
- -images
- '[{"name":"skaffold-image-leeroy-web-build-push-kaniko","type":"image","url":"localhost:5000/leeroy-web","digest":"","OutputImageDir":"/workspace/output/builtImage"}]'
command:
- /tekton/tools/entrypoint
image: registry.cn-shanghai.aliyuncs.com/kaniko-project-edas/imagedigestexporter:v0.10.2
name: step-image-digest-exporter-lvlj9

实践

使用 Tekton 构建代码并部署到 SAE

Serverless 应用引擎(SAE)是阿里云上一款面向应用的 Serverless PaaS 平台,帮助 PaaS 层用户免运维 IaaS,按需使用,按量计费,实现低门槛微服务应用上云,有效解决成本及效率问题。支持 Spring Cloud、Dubbo 和 HSF 等流行的开发框架,真正实现了 Serverless 架构和微服务架构的完美融合。

接下来将使用 Tekton 部署一个 Spring Cloud 微服务应用到 SAE 平台。
示例中的演示代码地址:https://github.com/alicloud-demo/spring-cloud-demo

1、前置条件

在 Kubernetes 集群上安装 Tekton:https://github.com/tektoncd/pi ... ll.md

创建一个 SAE 应用:https://help.aliyun.com/docume ... .html

2、定义一个 Git 资源
apiVersion: tekton.dev/v1alpha1
kind: PipelineResource
metadata:
name: spring-cloud-demo
spec:
type: git
params:
- name: url
value: https://github.com/alicloud-demo/spring-cloud-demo

3、定义构建和部署 Task

根据 SAE 官方文档进行部署,详情参考:https://help.aliyun.com/docume ... .html
apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
name: build-deploy-sae
spec:
inputs:
resources:
- name: source
  type: git
steps:
- name: build-and-deploy
image: maven:3.3-jdk-8
command: ["mvn", "clean", "package", "-f", "source", "toolkit:deploy", "-Dtoolkit_profile=toolkit_profile.yaml", "-Dtoolkit_package=toolkit_package.yaml", "-Dtoolkit_deploy=toolkit_deploy.yaml"]
securityContext:
  runAsUser: 0

4、定义 TaskRun 运行任务
apiVersion: tekton.dev/v1alpha1
kind: TaskRun
metadata:
name: build-deploy-sae
spec:
taskRef:
name: build-deploy-sae
inputs:
resources:
- name: source
  resourceRef:
    name: spring-cloud-demo

5、导入到 Kubernetes 中运行
kubectl apply -f source-2-service-taskrun.yaml

3.png

6、查看日志
kubectl logs build-deploy-sae-pod-85xdk step-build-and-deploy

构建日志:
4.png

部署日志:
[INFO] Start to upload [provider3-1.0-SNAPSHOT.jar] using [Sae uploader].
[INFO] [##################################################] 100.0%
[INFO] Upload finished in 3341 ms, download url: [https://edas-hz.oss-cn-hangzhou.aliyuncs.com/apps/K8S_APP_ID/37adb12b-5f0c-4711-98ec-1f1e91e6b043/provider3-1.0-SNAPSHOT.jar]
[INFO] Begin to trace change order: e2499b9a-6a51-4904-819c-1838c1dd62cb
[INFO] PipelineName: Batch: 1, PipelineId:f029314a-88bb-450b-aa35-7cc550ff1329
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Waiting...
[INFO] Deploy application successfully!
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 32:41 min
[INFO] Finished at: 2020-04-15T10:09:39+00:00
[INFO] Final Memory: 47M/190M
[INFO] ------------------------------------------------------------------------

7、验证部署结果

在 SAE 控制台查看变更记录:
5.png

验证应用访问:
6.jpg

总结

区别于传统的 CI/CD 工具(Jenkins),Tekton 是一套构建 CICD 系统的框架。 Tekton 不能使你立即获得 CI/CD 的能力。但是基于 Tekton 可以设计出各种花式的构建部署流水线。得益于 Tekton 良好的抽象,这些设计出的流水线可以作为模板在多个组织,项目间共享。Tekton 源自 Knative 的 Build-Template 项目,设计之初的一个重要目标就是使人们能够共享和重用构成 Pipeline 的组件,以及 Pipeline 本身。在 Tekton的RoadMap 中 Tekton Catelog 就是为了实现这一目标而提出的。

区别于 Argo 这种基于 Kubernetes 的 Workflow 工具, Tekton 在工作流控制上的支持是比较弱的。一些复杂的场景比如循环,递归等都是不支持的。更不用说 Argo 在高并发和大集群调度下的性能优化。这和 Tekton 的定位有关, Tekton 定位于实现 CICD 的框架,对于 CICD 不需要过于复杂的流程控制。大部分的研发流程可以被若干个最佳实践来覆盖。而这些最佳实践应该也必须可以在不同的组织间共享,为此 Tekton 设计了 PipelineResource 的概念。 PipelineResource 是 Task 间交互的接口,也是跨平台跨组织共享重用的组件,在 PipelineResource 上还可以有很多想象空间。

作者:九辩,阿里巴巴高级开发工程师,负责阿里云EDAS(企业级分布式应用服务)应用生命周期研发工作,长期关注云时代微服务的部署和治理工作。

原文链接:https://mp.weixin.qq.com/s/p2mBQJFk9cCxlcIcI9w1cg

0 个评论

要回复文章请先登录注册